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Abstract 

Stewart, K. and T. Geveci, Numerical experiments with a nonlinear evolution equation which exhibits blow-up, 
Applied Numerical Mathematics 10 (1992) 139-147. 

The results of numerical experiments which involve a nonlinear evolution equation exhibiting blow-up and the 
use of spectral and pseudospectral methods are examined. It is observed that in spite of the expected 
exponential-order accuracy of these methods in the case of smooth solutions, they do not perform well in the 
detection of blow-up. 

Constanstin, Lax and Majda [4] have suggested a simple one-dimensional model for the 
three-dimensional vorticity equation: 

aw 
x =H(+J, t > 0, --<X<~, (1) 

w(x, 0) = w&)9 
where w = o(x, t) and H(o) is the Hilbert transform, 

1 
H(w)(x) = - PV/ 

W(Y) 

Tr 
GUY - 

(PV denotes principal value). 
We shall consider the periodic counterpart of (I), where o( 0, t) is periodic with period 27~. 

In terms of the Fourier expansion of o, 
00 

o(x) = C Ljk eikx, 

where 
k= -co 

H(w)(x) = C - i sign(k)& eikx (2) 
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where i = 4Ti and 

1, if k = 1, 2,..., 
sign(k) = 0, if k-0, 

-1, if k= -1, -2 ,.... 

Let Hi, denote the Sobolev space of square-integrable 2T-periodic functions with square-in- 
tegrable first derivatives, equipped with the norm 

II OJ II 1. = ( II 0 II * + II D,w II *f’* 

where ]I l II denotes the L*-norm, 

I~to~12=~2T~~(x)12 dx. 
0 

In terms of the Fourier expansion of o, 

IIo(12=2Tr i l&l2 
k= -cn 

and 

(3) 

]]0[];=2T i (l+k2j)(jk1*. 
k= --m 

(4) 

As noted in [4], (1) is an evolution equation in H& with locally Lipschitz right-hand side, so 
that standard local existence and uniqueness results are applicable. In [4], the following explicit 
solution has been constructed: 

4%(X) 
o(x’ *) = (2 - tHw,(xj)2 + t*u:,(x) ’ 

From (5) it is observed in [4] that the solution blows up in finite time if 

2 = (x ] U(X) = 0 and Hut,(x) > 0) 

(5) 

(6) 
is not empty. In this case, O(X, t) becomes infinite as t 7 T,, where the blow-up time 

T, =2/M, M=sup((Ho,,),(x): oo(x)=O). 

In particular, if w&x) = cos TX, (Ho,)(x) = sin TX and 

0(x, t) = 
4 cos TX 

(2 - t sin*rx) -t t* cos*vx (7) 

for which the blow-up time T . = 2. W( x, t ) develops a singularity like l/(x - $) near x = f as 
t 2 2 as shown in Fig. 1. Although the problem is posed for --00 <x < 00, Fig. 1 only presents 
the solution on a subset of the spatial domain symmetric about the singularity point. 

As observed in [4] with O(X, t) given by (7), 

llo(*, t)ll 700 as tr2 

and of course 

llo(*, t)lllP~ as 02. 
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Fig. 1. (a) The evolution of the exact solution for t = 0 up to 1.5. (b) The evolution of the exact solution for t from 
1.5 to 2.0. 

The existence of an explicit solution which exhibits blow-up and the convenient description 
of the Hilbert transform in ferms of Fourier series (2) make this equation an ideal model to 
demonstrate what may happen if either spectral or pseudospectral spatial discretization 
schemes are used to obtain a numerical approximation to a nonlinear evolution equation. This 
is the aim of this paper. 

2. The approximation schemes and numerical results 

As a general reference on spectral and pseudospectral methods, the books by Gottlieb and 
Orszag [7] and Canuto, Hussaini, Quarteroni and Zang [3] may be consulted. 

The approximate solutions will be sought in the form of trigonometric polynomials 

N-l 

w(x) = C iCk eikx. 
k= -N 

If we set 

‘i -jr/N, j=O, I,..., 2N-1, Wj = W( Xj), 

we have 

(8) 

ikx, 
, l&=-N ,..., N-1. 
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Denoting 

W and m are thus related by the discrete Fourier transform and its inverse: 

SqW) = Iv, cp(jq) z w, (9) 
The spectral approximation for the solution to the nonlinear equation (l), 

N-l 

d(x, t) = C W:(t) eikx, 

k= -N 
(10) 

is based on the Galerkin idea [3, p< 771 of substituting the trigonometric approximation (10) into 
the differential equation (1) and projecting onto the basis functions q,(x) = e”*, yielding 

( awN 
--(-,t)-HwN(*, t),q, =o, 1=-N, ..*, N-l, 1 

where ( l , l ) denotes the L2-inner product. 
This results in a system of ordinary differential equations (ODES) which can be expressed as 

follows: Let 

jjN= (jhiN,...,i$-~]T* 1 
Define GN: R2N + R2N, where the k th component is expressed as the convolution 

(GN(dNj), = C - i sign(p) b;l~&~. 
p+q=k 

-N,cp,q<N-1 

The system of ODES is 

c(t) = GN(dN(t)), 

with initial condition 

where 

O:k 
= &2~‘wg(xj) e-ikxJ, k = -N ,..., N- 1. 

J-0 

The pseudospectral approximation is agairt in the form (10) but is determined by the 
collocation condition [3, p. 791 of satisfying the differential equation (1) at the points used to 
define the trigonometric representation, xj = jT/N: 

d$(Xj, t)=MWN(Xj, t)*o(Xj, t), j=O,...,2N- 1, 



with LGtial conditions 
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ON(Xi, O)=WO(“j), j=O,...,2N-- 1. 

This leads to the ODE system 

dflN 
7 =“t(“N”t),, 

with initial condition 

(12) 

where the jth component of g(nN) is obtained as the product of o,F and the jth component 
of (F- %?Y)( 0 N), %’ being the operation corresponding to the Hilbert transform (2), namely 
multiplication of the k th Fourier coefficient by i sign(k). 

3, Numerical results 

Numerical solutions of the ODES from the spectral (11) and pseudospectral (12) spatial 
discretizations were computed with initial condition oO( X) = cos ITX for x E [0, 21. The solu- 
tions were computed using the NCAR FFT package [9] to compute the discrete Fourier 
transforms (9) and a fifth-order, variable-stepsize Runge-Kutta-Fehlberg solver, RKF45 [8] 
(also in [6]) to advance the solution in time. The tolerance for the ODE solver was selected in 
order to display the accuracy of the spatial approximation faithfully, an absolute error tolerance 
of lo+ proved adequate. Prior to blow-up, the accuracy of the spectral and pseudospectral 

cv 
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Fig. 2. (a) Computed spectral solution at t = 1.5 using N = 16(O), 32(~) and 64( +) together with the exact solution. 

(b) Computed pseudospectral solution at t = 1.5 using N = 16(O), 32( A 1 and 64( +) together with the exact solution. 
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Fig. 3. (a) Log(error of spectral approximation) versus Nat t=lSforN= 8(4)40 together with linear regression fit. 

(b) LogCerror of pseudospectral approximation) versus Nat t=lSforN= 8(4)40 together with linear regression fit. 

schemes is as anticipated, Figure 2 exhibits the spectral and pseudospectral solutions at time 
t = 1.5, clearly demonstrating the increased accuracy as N increases from 16 up to 64 points. 
Although the prob!em was solved on the spatial domain [0, 21, only the portion [OJI, symmetric 
about the singularity point, is presented in the figures. 

Tadmor [lo] discussed the accuracy of spectral and pseudospectral approximation schemes in 
approximating analytic functions. He derived results which established exponential-order 
accuracy. The solution we are considering is meromorphic and we have verified exponential 
accuracy of both schemes prior to blow-up numerically. For example at t = 1.5, when we plot 
log& II O,,,J l , 1.5) - Cc)Bpprox( * , 1.5) II ) versus N we obtain the linear relationship as shown in 
Fig. 3. For clarity a straight line has also been fit to the data points using least squares. 

On the other hand, neither scheme performs well in predicting the blow-up at time t = 2. 
The performance of the pseudospectral method is especially disappointing. As seen in Fig. 4, 
the method computes an “approximate solution” beyond t = 2 without a clear indication of 
blow-up. The calculations with the spectral method are more indicative of blow-up at t = 2, as 
seen in Fig. 5. The oscillations appear before t = 2 and become very pronounced immediately 
past t = 2, even though an accurate estimation of the actual biow-up time is not feasible. One 
observes that the use of the larger value of N results in some indication of the blow-up in that 
there are much wilder fluctuations. 

AS a diagnostic tool, one can monitor the growth of the L,- or #,-norm of the discrete 
solution, given by (3) and (4) with the infinite sums replaced by the finite sum as in (8). Figures 
6 and 7 display these norms for the pseudospectral and spectral methods, respectively. The 
scale for the pscudospectral results in Fig. 6 is significantly smaller than that for the spectral 
results. It is again clear that the pseudospectral method does not perform well, and that the 
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Fig. 4. (a) Computed pseudospectral solution for t from 1.5 up to 2.1 using N = 32 together with the exact solution. 
(b) Computed pseudospectral solution for t from 1.5 up to 2.1 using N = 64 together with the exact solution. 

spectral method gives a clearer indication of blow-up. It is also clear that the growth of the 
#,-norm gives a much clearer indication of blow-up than the &-norm. This is not surprising 
in view of the fact that the evolution equation (1) is an equation with locally Lipschitz 
right-hand side in terms of the k&-norm. 
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Fig. 5. (a) Computed spectral solution for t from 1.5 up to 2.1 with N = 32 together with the exact solution. (b) 

Computed spectral solution for t from il.5 up to 2.1 with N = 64 together with the exact solution. 
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Fig. 6. (a) L,- and #,-norm of the pseudospectral solution for t up to 2.1 using N = 32. (;I) L,- and Nj,-norm of 
the pseudospectral solution for t up to 2.1 using N = 64. 
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Fig. 7. (a) t,- and H$norm of the spectral solution for f up to 2.1 using JV = 32. 09 L,- and Hi,-norm of the 
spectral solution for t up to 2.1 using N = 64. 
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4. Conclusion 

In this note we have tried to demonstrate the difficulty of assessing the results obtained by 

using spectral and pseudospectral spatial approximation schemes coupled with a widely used 
ODE solver, in dealing with solutions which exhibit blow-up. The accuracy of these schemes is 
well established in the case of smooth solutions. We have verified this prior to blow-up in the 
model equation we have considered. 

The spectral method does a much better job in indicating blow-up compared to the 
pseudospectral method. Aside from the oscillations in the solution obtained by the spectral 
method, the growth of the appropriate norm, in this case the H&-norm, is a convenient 
diagnostic tool. 

The reader may consult [1,2,5] which include demonstrations of the effect of the instability of 
solutions to certain evolution equations of the Korteweg-de Vries and Benjamin-On0 type on 
the performance of certain approximation schemes. 

It is thus obvious that one has to be very cautious in using standard schemes when such 
solutions are involved. Special schemes which are appropriate for the particular problem at 
hand need to be devised. 
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